考试一点通
  • 首页
  • 网校超市
  • 初中知识点
  • 高中知识点
  • 学习方法
  • 学习计划
  • 公式大全
  • 名言名句
  • 鼓励孩子

标签归档高一物理知识点

学习网站大全

  • 首页   /  
  • 标签: "高一物理知识点"
高中知识点 6月 17,2017

高中物理原子结构知识点汇总

高中物理原子结构知识点汇总一、电子的发现

1897年汤姆生(英)发现了电子,提出原子的枣糕模型,揭开了研究原子结构的序幕。(谁发现了阴极射线?)

  高中物理原子结构知识点汇总二、原子的核式结构模型

1、1909年起英国物理学家卢瑟福做了α粒子轰击金箔的实验,即α粒子散射实验(实验装置见必修本P257)得到出乎意料的结果:绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子却发生了较大的偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,偏转角几乎达到180°。(P53图)

2、卢瑟福在1911年提出原子的核式结构学说:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。

按照这个学说,可很好地解释α粒子散射实验结果,α粒子散射实验的数据还可以估计原子核的大小(数量级为10-15m)和原子核的正电荷数。原子序数=核电荷数=质子数=核外电子数。

  高中物理原子结构知识点汇总三、氢原子的光谱

1、光谱的种类:

(1)发射光谱:物质发光直接产生的光谱。炽热的固体、液体及高温高压气体发光产生连续光谱;稀薄气体发光产生线状谱,不同元素的线状谱线不同,又称特征谱线。

(2)吸收光谱:连续谱线中某些频率的光被稀薄气体吸收后产生的光谱,元素能发射出何种频率的光,就相应能吸收何种频率的光,因此吸收光谱也可作元素的特征谱线。

2、氢原子的光谱是线状的(这些亮线称为原子的特征谱线),即辐射波长是分立的。

3、基尔霍夫开创了光谱分析的方法:利用元素的特征谱线(线状谱或吸收光谱)鉴别物质的分析方法。

  高中物理原子结构知识点汇总四、波尔的原子模型

1、卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾(矛盾为:a、原子是不稳定的;b、原子光谱是连续谱),1913年玻尔(丹麦)在其基础上,把普朗克的量子理论运用到原子系统上,提出玻尔理论。

2、玻尔理论的假设:

(1)原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫做定态。氢原子的各个定态的能量值,叫做它的能级。原子处于最低能级时电子在离核最近的轨道上运动,这种定态叫做基态;原子处于较高能级时电子在离核较远的轨道上运动的这些定态叫做激发态。

(2)原子从一种定态(设能量为En)跃迁到另一种定态(设能量为Em)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即

h=En-Em

(3)原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。

3、玻尔计算公式:rn=n2r1,En=E1/n2(n=1,2,3¼¼)r1=0.53´10-10m,E1=-13.6eV,分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量。(选定离核无限远处的电势能为零,电子从离核无限远处移到任一轨道上,都是电场力做正功,电势能减少,所以在任一轨道上,电子的电势能都是负值,而且离核越近,电势能越小。)

4、从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。

6、玻尔模型的成功之处在于它引入了量子概念(提出了能级和跃迁的概念,能解释气体导电时发光的机理、氢原子的线状谱),局限之处在于它过多地保留了经典理论(经典粒子、轨道等),无法解释复杂原子的光谱。

7、现代量子理论认为电子的轨道只能用电子云来描述。

8、光谱测量发现原子光谱是线状谱和夫兰克—赫兹实验证实了原子能量的量子化(即原子中分立能级的存在)

作者 考试一点通
高中知识点 6月 17,2017

高中物理电磁场和电磁波知识点

高中物理电磁场和电磁波知识点

1.麦克斯韦的电磁场理论

(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场.

(2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场.

(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场.

2.电磁波

(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s.

下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。

1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.

(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.

2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb

求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.

3. 楞次定律

(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.

(2)对楞次定律的理解

①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.

②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:

①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).

4.法拉第电磁感应定律

电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt

当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形

①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .

②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .

5.自感现象

(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.

6.日光灯工作原理

(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.

(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.

7.电磁感应中的电路问题

在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:

(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路.

(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.

8.电磁感应现象中的力学问题

(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.

③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.

(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.

9.电磁感应中能量转化问题

导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:

(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.

(2)画出等效电路,求出回路中电阻消耗电功率表达式.

(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.

10.电磁感应中图像问题

电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.

另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.

作者 考试一点通
高中知识点 6月 17,2017

高中物理几何光学知识点

 高中物理几何光学知识点

一、光的反射和折射

1.光的直线传播

(1)光在同一种均匀介质中沿直线传播.小孔成像,影的形成,日食和月食都是光直线传播的例证.

(2)影是光被不透光的物体挡住所形成的暗区.影可分为本影和半影,在本影区域内完全看不到光源发出的光,在半影区域内只能看到光源的某部分发出的光.点光源只形成本影,非点光源一般会形成本影和半影.本影区域的大小与光源的面积有关,发光面越大,本影区越小.

(3)日食和月食:

人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食;当月球全部进入地球的本影区域时,人可看到月全食.月球部分进入地球的本影区域时,看到的是月偏食.

2.光的反射现象—:光线入射到两种介质的界面上时,其中一部分光线在原介质中改变传播方向的现象.

(1)光的反射定律:

①反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居于法线两侧. ②反射角等于入射角.

(2)反射定律表明,对于每一条入射光线,反射光线是唯一的,在反射现象中光路是可逆的.

3. 平面镜成像

(1)像的特点———平面镜成的像是正立等大的虚像,像与物关于镜面为对称。

(2)光路图作法———–根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。

(3).充分利用光路可逆——-在平面镜的计算和作图中要充分利用光路可逆。(眼睛在某点A通过平面镜所能看到的范围和在A点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。)

4.光的折射

(1)光由一种介质射入另一种介质时,在两种介质的界面上将发生光的传播方向改变的现象叫光的折射.

(2)光的折射定律

①折射光线,入射光线和法线在同一平面内,折射光线和入射光线分居于法线两侧.

②入射角的正弦跟折射角的正弦成正比,即sini/sinr=常数.

(3)在折射现象中,光路是可逆的.

5.折射率—光从真空射入某种介质时,入射角的正弦与折射角的正弦之比,叫做这种介质的折射率,折射率用n表示,即n=sini/sinr.

某种介质的折射率,等于光在真空中的传播速度c跟光在这种介质中的传播速度v之比,即n=c/v,因c>v,所以任何介质的折射率n都大于1.两种介质相比较,n较大的介质称为光密介质,n较小的介质称为光疏介质.

6.全反射和临界角

(1)全反射:光从光密介质射入光疏介质,或光从介质射入真空(或空气)时,当入射角增大到某一角度,使折射角达到90°时,折射光线完全消失,只剩下反射光线,这种现象叫做全反射.

(2)全反射的条件

①光从光密介质射入光疏介质,或光从介质射入真空(或空气).

②入射角大于或等于临界角

(3)临界角:折射角等于90°时的入射角叫临界角,用C表示sinC=1/n

7.光的色散:白光通过三棱镜后,出射光束变为红、橙、黄、绿、蓝、靛、紫七种色光的光束,这种现象叫做光的色散.

(1)同一种介质对红光折射率小,对紫光折射率大.

(2)在同一种介质中,红光的速度最大,紫光的速度最小.

(3)由同一种介质射向空气时,红光发生全反射的临界角大,紫光发生全反射的临界角小.

8.全反射棱镜——-横截面是等腰直角三角形的棱镜叫全反射棱镜。选择适当的入射点,可以使入射光线经过全反射棱镜的作用在射出后偏转90°或180°

要特别注意两种用法中光线在哪个表面发生全反射。​​​​​​​

9.玻璃砖—–所谓玻璃砖一般指横截面为矩形的棱柱。当光线从上表面入射,从下表面射出时,其特点是:

(1)射出光线和入射光线平行;

(2)各种色光在第一次入射后就发生色散;

(3)射出光线的侧移和折射率、入射角、玻璃砖的厚度有关;

(4)可利用玻璃砖测定玻璃的折射率。

二、光的波动性和微粒性

1.光本性学说的发展简史

(1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.

(2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.

2、光的干涉

光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:

(1)利用激光(因为激光发出的是单色性极好的光)。

(2)设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。

3.干涉区域内产生的亮、暗纹

(1)亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ= nλ(n=0,1,2,)

(2)暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即

δ= λ/2(2n-1)(n=0,1,2,) 相邻亮纹(暗纹)间的距离△x=(1/δ)λ用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。

4.衍射

光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

(1)各种不同形状的障碍物都能使光发生衍射。

(2)发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)

(3)在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。

5.光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。

6.光的电磁说

(1)光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)

(2)电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。

各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。

(3)红外线、紫外线、X射线的主要性质及其应用举例。

7.光电效应

(1)在光的照射下物体发射电子的现象叫光电效应。(下图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电。)

(2)光电效应的规律。①各种金属都存在极限频率ν0,只有ν≥ν0才能发生光电效应;②瞬时性(光电子的产生不超过s)。

(3)爱因斯坦的光子说。光是不连续的,是一份一份的,每一份叫做一个光子,光子的能量E跟光的频率ν成正比:E=hν

(4)爱因斯坦光电效应方程:Ek= hν –W(Ek是光电子的最大初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。)

8.光的波粒二象性

(1)光的波粒二象性:干涉、衍射和偏振表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子;因此现代物理学认为:光具有波粒二象性。

(2)正确理解波粒二象性—–波粒二象性中所说的波是一种概率波,对大量光子才有意义。波粒二象性中所说的粒子,是指其不连续性,是一份能量。

①个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。

②ν高的光子容易表现出粒子性;ν低的光子容易表现出波动性。

③光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性。

④由光子的能量E=hν,光子的动量表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。

由以上两式和波速公式c=λν还可以得出:E = p c。

作者 考试一点通
高中知识点 6月 17,2017

光谱知识点总结

高中物理光谱知识点总结(一)

(1)发射光谱 物体发光直接产生的光谱叫做发射光谱.发射光谱有两种类型:连续光谱和明线光谱.

连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱.炽热的固体、液体和高压气体的发射光谱是连续光谱.例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱.

只含有一些不连续的亮线的光谱叫做明线光谱.明线光谱中的亮线叫做谱线,各条谱线对应于不同波长的光.稀薄气体或金属的蒸气的发射光谱是明线光谱.明线光谱是由游离状态的原子发射的,所以也叫原子光谱.观察气体的原子光谱,可以使用光谱管,它是一支中间比较细的封闭的玻璃管,里面装有低压气体,管的两端有两个电极.把两个电极接到高压电源上,管里稀薄气体发生辉光放电,产生一定颜色的光.

观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱.

实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构.

(2)吸收光谱 高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产

光谱生的光谱,叫做吸收光谱.例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线.这就是钠原子的吸收光谱.值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光.因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少

    高中物理光谱知识点总结(二)

1、发射光谱:物质发光直接产生的光谱

从实际观察到的物质发光的发射光谱可分为连续谱和线状谱。

(1)连续谱:连续分布着的包含着从红光到紫光的各种色光的光谱。

产生:是由炽热的固体、液体、高压气体发光而产生的。

(2)线状谱:只含有一些不连续的亮线的光谱,线状谱中的亮线叫谱线。

产生:由稀薄气体或金属蒸气(即处于游离态下的原子)发光而产生的,观察稀薄气体放电用光谱管,观察金属蒸气发光可把含有该金属原子的物质放到煤气灯上燃烧,即可使它们汽化后发光。

2、吸收光谱:高温物体发出的白光通过物质后,某些波长的光波被物质吸收后产生的光谱。

产生:由炽热物体(或高压气体)发出的白光通过温度较低的气体后产生。

例如:让弧光灯发出的白光通过低温的钠气,可以看到钠的吸收光谱。

若将某种元素的吸收光谱和线状谱比较可以发现:各种原子吸收光谱的暗线和线状谱和亮线相对应,即表明某种原子发出的光和吸收的光的频率是特定的,故吸收光谱和线状谱中的暗线比线状谱中的亮线要少一些。

3、光谱分析

各种元素的原子都有自己的特征谱线,如果在某种物质的线状谱或吸收谱中出现了若干种元素的特征谱线,表明该物质中含有这种元素的成分,这种对物质进行化学组成的分析和鉴别的方法称为光谱分析。

其优点:灵敏、快捷、检查的最低量是10-10克。

4、光谱分析的应用

(1)光谱分析在科学技术中有着广泛的应用,例如,在检测半导体材料硅和锗是不是达到高纯度要求时,就要用到光谱分析。

(2)历史上,光谱分析还帮助人们发现了许多新元素,例如,铷和铯就是人们通过分析光谱中的特征谱线而发现的。

(3)利用光谱分析可以研究天体的物质成分,19世纪初在研究太阳光谱时,人们发现它的连续光谱中有许多暗线,通过仔细分析这些暗线,并把它们跟各种原子的特征谱线对照,人们知道了太阳大气层中含有氢、氦、氮、碳、氧、铁、镁、硅、钙、钠等几十种元素。

(4)光谱分析还能鉴定食品的优劣。例如,通过分析茶叶的近红外光谱,测定其各种化学成分的含量,就可以鉴定茶叶的优劣、级别、真假以及品种等。

(5)用光谱分析还可以鉴定文物,例如:1978年在新石器时代遗址浙江省余姚县河姆渡村,人们挖掘出一件木质漆碗,器壁外涂有一层朱红色的涂料,且微有光泽,借助光谱分析,鉴定出这种涂料与马王堆出土的漆皮类似,因此漆工艺的历史可追溯至7000年前。

5、氢原子光谱的实验规律

氢原子是自然界中最简单的原子,对它的光谱线的研究获得的原子内部结构的信息,对于研究更复杂的原子的结构有指导意义。

(1)氢原子的光谱

作者 考试一点通
高中知识点 6月 17,2017

动能定理知识点总结

高中物理动能定理知识点总结(一)

一、动能

如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能. Ek=½mv2,

其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。

二、动能定理

做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+……=½mvt2-½mv02

1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小.

3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等.

4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和.

5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理.

6.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用.

7.对动能定理中的位移与速度必须相对同一参照物.

     高中物理动能定理知识点总结(二)

一、整过程运用动能定理

(一)水平面问题

1、一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为( )

A. 0 B. 8J C. 16J D. 32J

2、 一个物体静止在不光滑的水平面上,已知m=1kg,u=0.1,现用水平外力F=2N,拉其运

2

10m/s动5m后立即撤去水平外力F,求其还能滑 m(g取)

【解析】对物块整个过程用动能定理得:

Fs0?umg?s?s0??0

解得:s=10m

3、总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力,如图所示。设运动的阻力与质量成正比,机车的牵引力是恒定的。当列车的两部分都停止时,它们的距离是多少?

【解析】对车头,脱钩后的全过程用动能定理得:

1

FL?k(M?m)gS1??(M?m)V02

2

对车尾,脱钩后用动能定理得:

V0

1

?kmgS2??mV02

2

而?S?S1?S2,由于原来列车是匀速前进的,

所以F=kMg

ML

由以上方程解得?S?。

M?m

(二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度

v0将一个质量为m的物体竖直向上抛出,上升的最大高度

为h,空中受的空气阻力大小恒力为f,则人在此过程中对球所做的功为( )

1212mv0mv0?mgh?fh

mgh?fh22A. B. C. D. mgh?fh

2、一小球从高出地面H米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。

【解析】钢球从开始自由下落到落入沙中停止为研究过程 根据动能定理w=△EK 可得: WG+Wf=0-0①

重力做功

(H+h)② 阻力做功③

总

由①②③解得:f=(1+

H) h

(三)斜面问题

1、如图所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?

【解析】设其经过和总路程为L,对全过程,由动能定理

得:

mgS0sin???ngcos?L?0?

12

mv0 2

P

得L?

mgS0sin??

?mgcos?

12mv0

2、一块木块以v0?10m/s初速度沿平行斜面方向冲上一段长L=5m,倾角为??30?的斜面,见图所示木块与斜面间的动摩擦因数??0.2,求木块冲出斜面后落地时的速率(空气

2

g?10m/s阻力不计,)。

【解析】:整个过程中重力等于没有做功 只有摩擦力作负功:

?umgcos??L?

解得: v=8.08

1212

mv?mv0 22

? 分析:斜面是否足够长若够长且能滑落到地面:

斜面的最小长度s:v0?2(gsin??ugcos?)s 则落地速度:?umgcos??2L?

2

1212mv?mv0 22

3、如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。已知斜面高为h,滑块运动的整个水平距离为s,设转角B处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。 【解析】滑块从A点滑到m,动摩擦因数为u由动能定理得:

smgh??mgcos??1??mgs2cos?

(四)圆弧

1、如图所示,质量为m的物体 。

2、如图所示,AB和CD两端相切,圆弧所对圆心角为1200,半径R=2m,整个装置处在竖直平面上。一个物体在离弧底E的高度h=3m处以速率v0=4m/S沿斜面向下运动,若物体与斜面间的动摩擦因数u=0.02,试求物体在斜面(不包括圆弧部分)上能走多长的路程?

【解析】设物体在斜面上走过的路程为s,经分析,物体在运动过程中只有重力和摩擦力对它做功,最后的状态是在B、C之间来回运动,则在全过程中,由动能定理得

12

mgh?R(1?cos600)?u?mgcos600?s??mv0

2

??

代入数据,解得s=280m

(五)圆周运动

1、如图所示,质量为m力对物体做的功为( )

A.0

B. 2??mgRD. ?mgR/2C. 2?mgR

2、一个质量为mR1【解析】:

3、(1小球处于最低平衡位置时,给小球一定得初速度,要小球能在竖直平面内作圆周运动并通过最高点P,初速度至少应多大?(2)若将上题中绳换成杆呢?

4、如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看作质点)从直轨道上的P点由静止释放,结果它能在两轨道间做

往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:

(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;

(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;

(3)为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′应满足什么条件.

【解析】:(1)因为摩擦始终对物体做负功,所以物体最终在圆心角为2θ的圆弧上往复运动.

对整体过程由动能定理得:mgR·cos θ-μmgcos θ·s=0,所以总路程为s=.

μ12

(2)对B→E过程mgR(1-cos θ)=mvE①

2

2mvE

FN-mg=②

R

v1=?

R

由①②得对轨道压力:FN=(3-2cos

θ)mg.

2mvD

(3)设物体刚好到D点,则mg=

R

12

对全过程由动能定理得:mgL′sin θ-μmgcos θ·L′-mgR(1+cos θ)=D④

23+2cos θ

由③④得应满足条件:L′=R.

2(sin θ-μcos θ)3+2cos θR

答案:(1)(2)(3-2cos θ)mg (3)·R

μ2(sin θ-μcos θ)

5、在水平向右的匀强电场中,有一质量为m.带正电的小球,用长为l的绝缘细线悬挂于O点,当小球在B点静止时细线与竖直方向夹角为θ。现给小球一个垂直悬线的初速度,使小球恰能在竖直平面内做圆周运动。试问(1)小球在做圆周运动的过程中,在那一个位置的速度最小?速度最小值是多少?(2)小球在B点的初速度是多大?

【解析】根据动能定理可得到:圆周运动的速度的最大值在平衡位置,即“物理最低

点”。速度的最小值在平衡位置的反方向上,即“物理最高点”。最高点的最小速度是

,g是等效重力加速度。

(1)如图所示,设小球受到的电场力为FE 小球在B点静止,则FE=

/

电场力与重力的合力F大小一定,方向沿AB 小球从B到A运动,克服合力F做功,由动能定理得:

可见A点克服阻力做功最多,速度最小。A点等效为竖直面圆周运动的最高点。

对A点,根据牛顿定律得:

所以A点速度的最小值为

6、如图所示,在方向竖直向下的匀强电场中,一绝缘轻细线一端固定于O点,另一端系一带正电的小球在竖直平面内做圆周运动.小球的电荷量为q,质量为m,绝缘细线长为L,电场的场强为E.若带电小球恰好能通过最高点A,则在A点时小球的速度v1为多大?小球运动到最低点B时的速度v2为多大?运动到B点时细线对小球的拉力为多大?

作者 考试一点通
高中知识点 6月 17,2017

楞次定律知识点总结

高中物理楞次定律知识点总结(一)

一、电磁感应现象:

1、只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中 ( 是B与S的夹角)看,磁通量的变化 可由面积的变化 引起;可由磁感应强度B的变化 引起;可由B与S的夹角 的变化 引起;也可由B、S、 中的两个量的变化,或三个量的同时变化引起。

下列各图中,回路中的磁通量是怎么的变化,我们把回路中磁场方向定为磁通量方向(只是为了叙述方便),则各图中磁通量在原方向是增强还是减弱。

(1)图:由弹簧或导线组成回路,在匀强磁场B中,先把它撑开,而后放手,到恢复原状的过程中。

(2)图:裸铜线 在裸金属导轨上向右匀速运动过程中。

(3)图:条形磁铁插入线圈的过程中。

(4)图:闭合线框远离与它在同一平面内通电直导线的过程中。

(5)图:同一平面内的两个金属环A、B,B中通入电流,电流强度I在逐渐减小的过程中。

(6)图:同一平面内的A、B回路,在接通K的瞬时。

(7)图:同一铁芯上两个线圈,在滑动变阻器的滑键P向右滑动过程中。

(8)图:水平放置的条形磁铁旁有一闭合的水平放置线框从上向下落的过程中。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。

二、楞次定律:

1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化 感应电流 感应电流磁场 磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时( 原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场( 感),这就是电流的磁效应问题;而且I感的方向就决定了 感的方向(用安培右手螺旋定则判定); 感阻碍 原的变化——这正是楞次定律所解决的问题。这样一个复杂的过程,可以用图表理顺如下:

楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:

(1)阻碍原磁通的变化(原始表速);

(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

(3)使线圈面积有扩大或缩小的趋势;

(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律 判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:

(1)查明原磁场的方向及磁通量的变化情况;

(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用右手,“因动而电”用右手,因果关系不可混淆。

     高中物理楞次定律知识点总结(二)

一、楞次定律的内容及其理解

1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

2.适用范围:所有的电磁感应现象(知识点详解见法拉第电磁感应定律)

3.本质:阻碍是能量守恒的反映,在克服阻碍的过程中,其他形式的能转化为电能。

4.阻碍的含义:

A.阻碍的主题与对象

感应电流的磁场阻碍引起感应电流的磁场(原磁场)磁通量的变化

B.阻碍的方式

当磁通量增大时没感应电流的磁场方向与原电磁方向相反,阻碍其增加,反之二者方向则相同,即“增反减同”

C.阻碍的结果

阻碍并不是阻止。只是延缓了磁通量变化的过程,最终结果不受影响,磁通量是增加的最终仍增加,是减少的最终仍然减少。

5.理解楞次定律的另一种表述:

(1)表述内容:感应电流总是反抗产生它的那个原因。

(2)表现形式有四种:

a.阻碍原磁通量的变化;增反减同。

b.阻碍物体间的相对运动,有的人把它称为“来拒去留”。

c.增缩减扩,磁通量增大,面积有收缩的趋势,磁通量减小,面积有扩大的趋势。

d.阻碍原电流的变化(自感)。

二、楞次定律与右手定则的关系

导体切割磁感线运动产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则(详细知识点请查看左手定则和右手定则)能判定的,一定也能用楞次定律判定。只是在某些情况下,不如用右手定则判定来得方便。用楞次定律能判定的,并不见得用右手定则能判断出来。如闭合圆形导线中的磁场逐渐增强,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定出来。

三、楞次定律的应用

1.应用楞次定律的步骤

a.明确原来的磁场方向

b.判断通过研究对象的磁通量的变化情况

c.根据“增反减同”判定感应电流的磁场方向

d.用安培定则(右手螺旋定则)来确定感应电流(感应电动势)的方向

2.应用拓展

(1)增反减同。当原磁通量增加时,感应电流的磁场方向就与原磁场方向相反,当原磁通量减少时,感应电流的磁场方向与原磁场方相同。

(2)来拒去留:感应电流阻碍相对运动,原磁场来时,感应电流的磁场要拒之,原磁场离去时,感应电流的磁场要留之。

(3)增缩减扩:回路原磁通量增大时,闭合回路的面积有收缩的趋势,原磁通量减少时,闭合回路面积有扩大的趋势

(4)阻碍原电流变化:线圈是原电流增加,在线圈中自感电流的方向与原电流方向相反,反之,则相同

作者 考试一点通
高中知识点 6月 17,2017

透镜知识点总结

 高中物理透镜知识点总结(一)

一 、透镜

透镜:透明物质制成(一般是玻璃),至少有一个表面是球面的一部分,对光起折射作用的光学元件。

分类:1、凸透镜:边缘薄,中央厚。2、凹透镜:边缘厚,中央薄。

主光轴:通过两个球心的直线。

光心:主光轴上有个特殊的点,通过它的光线传播方向不变。(透镜中心可认为是光心)

焦点:凸透镜能使跟主轴平行的光线会聚在主光轴上的一点,这点叫透镜的焦点,用”F”表示

虚焦点:跟主光轴平行的光线经凹透镜后变得发散,发散光线的反向延长线相交在主光轴上一点,这一点不是实际光线的会聚点,所以叫虚焦点。

焦距:焦点到光心的距离叫焦距,用” f “表示。

每个透镜都有两个焦点、焦距和一个光心。

透镜对光的作用:

凸透镜:对光起会聚作用。

凹透镜:对光起发散作用。

二、 生活中的透镜

照相机:镜头相当于凸透镜,来自物体的光经过照相机镜头后会聚在胶片上,成倒立、缩小的实像。

投影仪:镜头相当于凸透镜,来自投影片的光通过凸透镜后成像,再经过平面镜改变光的传播方向,使屏幕上成倒立、放大的实像。

放大镜:成正立、放大的虚像。

三、 探究凸透镜成像规律

实验:从左向右依次放置蜡烛、凸透镜、光屏。1、调整它们的位置,使三者在同一直线(光具座不用);2、调整它们,使烛焰的中心、凸透镜的中心、光屏的中心在同一高度。

凸透镜成像规律:

物距(u) 像距( υ ) 像的性质 应用

u > 2f f<υ<2f 倒立缩小实像 照相机

u = 2f υ= 2f 倒立等大实像 (实像大小转折)

f< u<2f υ> 2f 倒立放大实像 幻灯机

u = f 不成像 (像的虚实转折点)

u < f υ> u 正立放大虚像 放大镜

凸透镜成像规律口决记忆法

口决一:”一焦(点)分虚实,二焦(距)分大小;虚像同侧正;实像异侧倒,物远像变小”。

口决二:

物远实像小而近,物近实像大而远,

如果物放焦点内,正立放大虚像现;

幻灯放像像好大,物处一焦二焦间,

相机缩你小不点,物处二倍焦距远。

口决三:

凸透镜,本领大,照相、幻灯和放大;

二倍焦外倒实小,二倍焦内倒实大;

若是物放焦点内,像物同侧虚像大;

一条规律记在心,物近像远像变大。

注1:为了使幕上的像”正立”(朝上),幻灯片要倒着插。

注2:照相机的镜头相当于一个凸透镜,暗箱中的胶片相当于光屏,我们调节调焦环,并非调焦距,而是调镜头到胶片的距离,物离镜头越远,胶片就应靠近镜头。

四、 眼睛和眼镜

眼睛:眼睛中晶状体和角膜的共同作用相当于凸透镜,它把来自物体的光会聚在视网膜上,形成物体的像。视网膜上的视神经细胞受到光的刺激,把信号传输给大脑。看远处物体时,睫状肌放松,晶状体比较薄(焦距长,偏折弱)。看近处物体时,睫状肌收缩,晶状体比较厚(焦距短,偏折强)。

近视的表现:能看清近处的物体,看不清远处的物体。

近视的原因:晶状体太厚,折光能力太强,或眼球前后方向太长,致使远处物体的像成在视网膜前。

近视的矫治:佩戴凹透镜。

远视的表现:能看清远处的物体,看不清近处的物体。

远视的原因:晶状体太薄,折光能力太弱,或眼球前后方向太短,致使远处物体的像成在视网膜后。

远视的矫治:佩戴凸透镜。

眼镜的度数:100×焦距的倒数( )。

五、显微镜和望远镜

显微镜:物镜焦距较短,物体通过它成倒立、放大的实像(像投影仪的镜头);目镜焦距较长,物镜成的像经过它成放大的虚像(像放大镜)。

望远镜:(开普勒望远镜)物镜的作用是使远处的物体在焦点附近成实像,目镜的作用相当于一个放大镜,用来把这个像放大。

注:伽利略望远镜目镜为凹透镜,天文望远镜常用凹面镜作物镜。

视角:物体的边缘跟眼睛所夹的角。视角越大,成的像越大。

     高中物理透镜知识点总结(二)

  透镜的定义

透镜:至少有一个面是球面的一部分的透明玻璃元件(要求会辨认)

1、凸透镜:中间厚、边缘薄的透镜,如:远视镜片,照相机的镜头、投影仪的镜头、放大镜等等;

2、凹透镜:中间薄、边缘厚的透镜,如:近视镜片;

薄透镜:透镜的厚度远小于球面的半径。

主光轴:通过两个球面球心的直线。

光心:(O)即薄透镜的中心。性质:通过光心的光线传播方向不改变。

焦点(F):凸透镜能使跟主光轴平行的光线会聚在主光轴上的一点,这个点叫焦点。

焦距(f):焦点到凸透镜光心的距离。

主光轴:通过两个球面球心的直线。

  凸透镜成像原理

  测量凸透镜焦距的方法

使凸透镜正对太阳光(太阳光是平行光,使太阳光平行于凸透镜的主光轴),下面放一张白纸,调节凸透镜到白纸的距离,直到白纸上光斑最小、最亮为止,然后用刻度尺量出凸透镜到白纸上光斑中心的距离就是凸透镜的焦距。

  三条特殊的光线

1、过光心的光线经透镜后传播方向不改变,如下图:

2、平行于主光轴的光线,经凸透镜后经过焦点;经凹透镜后向外发散,但其反向延长线必过焦点(所以凸透镜对光线有会聚作用,凹透镜对光有发散作用)如下图:

3、经过凸透镜焦点的光线经凸透镜后平行于主光轴;射向异侧焦点的光线经凹透镜后平行于主光轴;如下图:

  放大镜:

1、放大镜是凸透镜;

2、放大镜到物体的距离(物距)小于一倍焦距,成的是放大、正立的虚像;注:要让物体更大,应该让放大镜远离物体;

  正确区分实像和虚像

物体通过透镜可能成实像,也可能成虚像。而实像和虚像的区别是什么呢?

(1)成像原理不同,物体发出的光线经光学器件会聚而成的像为实像,经光学器件后光线发散,反向延长相交形成的像叫虚像。

(2)成像性质上的区别,实像是倒立的,虚像是正立的。

(3)接收方法上的区别:实像既能被眼睛看到,又能被光屏接收到,虚像只能被眼睛看到,不能被光屏接收到。

作者 考试一点通

1 2 … 8 下一个

网校排名
1。简单学习网校
2。学而思网校
3。新东方在线网校
4。中小学教育网
5。北京四中网校
6。黄冈中学网校
7。CCTV中学生网校
8。德智网校
9。精华网校
10。101网校

考试一点通网校计划成为提供免费学习资料的在线学习网,内容包括初中知识点、高中知识点、学习方法、学习计划、名言名句、学习网站大全等学习资料。

考贝网学习网址导航旧版停止服务,2009-2018。

高中知识点总结
高考数学知识点总结
高考物理知识点总结
高考化学知识点总结
高考语文知识点总结
高考政治知识点总结
高考历史知识点总结
高考英语知识点总结

初中知识点总结

 

网站导航

驾校一点通 视频网站 教程网站
公开课网站 考试大全 学习网站

标签

七年级语文上 八年级语文上 八年级语文下 关于柳树的诗句 关于桃花的诗句 关于梅花的诗句 关于荷花的诗句 关于菊花的诗句 初一数学知识点 初一英语知识点 初一语文知识点 初中历史知识点 初中地理知识点 初中生物知识点 初中英语单词 初中英语语法 初中语文基础知识 唐代 宋代 抒情诗句 新东方 英语六级词汇 英语四级单词 高一历史必修一知识点总结 高一物理知识点 高三生物知识点 高中化学重要知识点总结 高中生物知识点总结 高中英语单词 高中英语知识点总结必修1 高中英语知识点总结必修2 高中英语知识点总结必修3 高中英语知识点总结必修4 高中英语知识点总结必修5 高中英语知识点总结选修6 高中英语知识点总结选修7 高中英语知识点总结选修8 高中语文基础知识 高二化学知识点 高考励志 高考化学知识点 高考历史知识点 高考政治知识点 高考物理知识点 高考英语知识点

友情链接

33卫星地图 少儿英语培训加盟 会计职称考试网 听力库英语网 留学攻略 山东培训网 114培训网 考试宝典

All Rights Reserved by BusiProf. Designed and Developed by 考试一点通.