初一数学代数式的求值知识点

初一数学代数式的求值知识点(一)

代数式的值:

用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。

代数式求值的步骤:

(1)代入;

(2)计算。

常用的代入方法有直接代入法与整体代入法。

注:代数式的值的取值条件:

(1)不能使代数式失去意义;

(2)不能使所表示的实际问题失去意义。

求代数式的值的方法:

①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。

②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。

③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。

初一数学代数式的求值知识点(二)

一、选择题(共12小题)

1.已知m=1,n=0,则代数式m+n的值为(  )

A.﹣1 B.1 C.﹣2 D.2

【考点】代数式求值.

【分析】把m、n的值代入代数式进行计算即可得解.

【解答】解:当m=1,n=0时,m+n=1+0=1.

故选B.

【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.

2.已知x2﹣2x﹣8=0,则3×2﹣6x﹣18的值为(  )

A.54 B.6 C.﹣10 D.﹣18

【考点】代数式求值.

【专题】计算题.

【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.

【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,

∴3×2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.

故选B.

【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.

3.已知a2+2a=1,则代数式2a2+4a﹣1的值为(  )

A.0 B.1 C.﹣1 D.﹣2

【考点】代数式求值.

【专题】计算题.

【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.

【解答】解:∵a2+2a=1,

∴原式=2(a2+2a)﹣1=2﹣1=1,

故选B

【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.

4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是(  )

A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1

【考点】代数式求值.

【专题】压轴题;图表型.

【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.

【解答】解:A、把x=4代入得: =2,

把x=2代入得: =1,

本选项不合题意;

B、把x=2代入得: =1,

把x=1代入得:3+1=4,

把x=4代入得: =2,

本选项不合题意;

C、把x=1代入得:3+1=4,

把x=4代入得: =2,

把x=2代入得: =1,

本选项不合题意;

D、把x=2代入得: =1,

把x=1代入得:3+1=4,

把x=4代入得: =2,

本选项符合题意,

故选D

【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.

5.当x=1时,代数式4﹣3x的值是(  )

A.1 B.2 C.3 D.4

【考点】代数式求值.

【专题】计算题.

【分析】把x的值代入原式计算即可得到结果.

【解答】解:当x=1时,原式=4﹣3=1,

故选A.

【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.

6.已知x=1,y=2,则代数式x﹣y的值为(  )

A.1 B.﹣1 C.2 D.﹣3

【考点】代数式求值.

【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.

【解答】解:当x=1,y=2时,

x﹣y=1﹣2=﹣1,

即代数式x﹣y的值为﹣1.

故选:B.

【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.

7.已知x2﹣2x﹣3=0,则2×2﹣4x的值为(  )

A.﹣6 B.6 C.﹣2或6 D.﹣2或30

【考点】代数式求值.

【专题】整体思想.

【分析】方程两边同时乘以2,再化出2×2﹣4x求值.

【解答】解:x2﹣2x﹣3=0

2×(x2﹣2x﹣3)=0

2×(x2﹣2x)﹣6=0

2×2﹣4x=6

故选:B.

【点评】本题考查代数式求值,解题的关键是化出要求的2×2﹣4x.

8.按如图的运算程序,能使输出结果为3的x,y的值是(  )

A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9

【考点】代数式求值;二元一次方程的解.

【专题】计算题.

【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.

【解答】解:由题意得,2x﹣y=3,

A、x=5时,y=7,故A选项错误;

B、x=3时,y=3,故B选项错误;

C、x=﹣4时,y=﹣11,故C选项错误;

D、x=﹣3时,y=﹣9,故D选项正确.

故选:D.

【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.

9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是(  )

A.3 B.0 C.1 D.2

【考点】代数式求值.

【专题】整体思想.

【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.

【解答】解:∵m+n=﹣1,

∴(m+n)2﹣2m﹣2n

=(m+n)2﹣2(m+n)

=(﹣1)2﹣2×(﹣1)

=1+2

=3.

故选:A.

【点评】本题考查了代数式求值,整体思想的利用是解题的关键.

10.已知x﹣2y=3,则代数式6﹣2x+4y的值为(  )

A.0 B.﹣1 C.﹣3 D.3

【考点】代数式求值.

【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.

【解答】解:∵x﹣2y=3,

∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0

故选:A.